抗体药物的发展历程

[2021-05-28 14:44:30]
生物药学科普 | 来源
做科普的花儿 | 作者
 Dara | 编辑
01
抗体的发现

抗体药物是生物技术制药领域的一个重要方面。抗体药物的发展并不是一蹴而就的,抗体的发现以及抗体药物的临床应用经历了一段漫长的历史进程。
抗体治疗的最早应用可以追溯到中国人接种“人痘”预防天花的记载算起,国际上一般公认的人痘接种术最早起源于中国公元10世纪,但据中国的一些史书记载,种痘始于唐朝。1661年,随着因得过天花而继承皇位的康熙执政,人痘接种开始从民间走进皇宫,种痘术开始在全国得以提倡和推广。到后来的英国人Jenner受到中国人痘接种法的启示,接种牛痘预防天花,直至今日,免疫学的发展已有三个半世纪。
1

照片为我国为边境少数民族孩子种痘,图片来源于网络。

早在19世纪末,抗体被动免疫疗法的创立为当时不发达的疾病治疗开辟了新途径。Ehrlich提出的侧链学说为免疫学与免疫疗法奠定了基础。19世纪80年代后期,学者们在研究病原菌的过程中,发现白喉杆菌分泌的白喉外毒素有致病性,进而发现在感染者的血清中有“杀菌素”(bactericidins),这就是最早发现的抗体。
在抗体发现早期,这种特异性的抗体物质勾起了科学家们极大的兴趣,科学家们前赴后继致力于解析抗体的结构,但由于落后的实验条件,进展缓慢。

●1937年瑞典物理学家Arne Wilhelm Kaurin Tiselius通过电泳技术证明了抗体也是一种蛋白质,并将其称为γ球蛋白。

1953年英国生物化学家Frederick Sanger成功解析了同样身为蛋白质的胰岛素的化学结构,从而为科学家们解析抗体结构指明了方向。

1963年,Edelman与RodneyRobert Porter(Sanger的第一个博士研究生)结合两人多年的研究结果,提出了比较成熟的“Y”型对称结构的抗体分子模型。

1969年,Edelman和Porter完成了一项在当时了不起的成就,他们成功对抗体1300多个氨基酸序列进行了测定,是当时测定氨基酸序列的最大的蛋白质分子。

在Edelman提出的抗体多样性理论的基础上,1976年,日本科学家利根川进和同事在检测不产生抗体的胚胎细胞和产生抗体骨髓瘤细胞中抗体轻链基因的分布时发现,胚胎细胞中不同抗体基因距离较远,而骨髓瘤细胞中抗体基因距离接近,这个发现说明生殖细胞在发育成免疫细胞的过程中,抗体基因发生了重新分布现象。利根川进在此基础上用一系列确凿的实验数据确定了抗体多样性是由B淋巴细胞中抗体基冈的染色体重排和突变造成的。根据估算,抗体基因通过重组和突变甚至可以编码100亿种不同的抗体,很好解释了抗体多样性产生的原因。1987年,利根川进由于抗体多样性的突破性研究独享了该年度的诺贝尔生理学或医学奖。
02
抗体的类型

抗体重链类型直接决定了抗体的类型,哺乳动物抗体重链可分为五类,分别以希腊字母γ、α、μ、δ、和ε表示,据此将抗体相应地分为IgG、 IgA、 IgM、IgD和IgE。α和γ大约含有450个氨基酸,μ和ε约含550个氨基酸;同时μ链和ε链含有5个肽环,γ链、α链、δ链含有4个肽环。
  • IgG是血清中一种主要的Ig,含量占总Ig的65—75%左右。广泛分布于组织液中,血管内、外间隙中分布量大体相当。是机体抗感染的一种重要物质。
  • IgM是成熟胎儿合成的第一类Ig,也是在感染或免疫后最早产生的Ig,5类Ig中IgM最强,故其细胞毒活性和细胞溶解活性也最强。天然的血型抗体是IgM,有些自身抗体如抗磷脂抗体、RF等也属于IgM。胎儿脐血中IgM抗体升高,是胎儿遭受感染的标志。
  • IgA在血清和组织液中的含量相对较少,血清型IgA含量占总Ig的15—25%,但在外分泌液如初乳、唾液、眼泪、肠道分泌液和支气管分泌液中含量较高。由于IgA主要存在于外分泌液中,故在第一线抗感染防御中起重要作用。
  • IgE为单体结构,是正常人血清中含量最少的Ig。IgE在血清和组织液中含量极微,其主要生物学功能是与组织肥大细胞、嗜碱粒细胞表面的特异受体结合。IgE不能激活补体。IgE含量在正常人群波动较大,在特异性过敏反应和寄生虫早期感染患者血清中可升高。当变态反应原与结合在受体上的IgE反应时,可引起肥大细胞、嗜碱粒细胞脱颗粒,释放出组织胺、5—羟色胺等生物活性物质。
  • IgD在正常人血清中IgD浓度很低,几乎检测不到。IgD主要存在于人B淋巴细胞表面作为抗原的细胞受体,在血清中IgD含量极微且与膜结合的IgD有不同结构。B细胞上IgD的可变区与该细胞将分泌的IgG、IgA、IgM的可变区相同,当抗原与IgD受体结合时,刺激B细胞繁殖、分化、并分泌对抗原特异的其他类抗体
哺乳动物抗体轻链大约由211–217个氨基酸残基组成,共有两型:kappa(κ)与lambda(λ),同一个天然Ig分子上轻链的类型总是相同。但在同一个体内可存在分别带有κ或λ链的抗体分子。不同种属生物体内两型轻链的比例不同,正常人血清免疫球蛋白κ链:λ链约为2:1,而在小鼠的比例为20:1。其他低等脊椎动物中存在iota (I)亚型轻链,如软骨鱼类和真骨鱼类。
03
抗体的结构

免疫球蛋白Ig由4条多肽链通过链间和链内二硫键连接组成:两条相同的相对分子质量较大的肽链(称为重链,heavychain,H链,相对分子质量约为55000或70000)和两条相同的相对分子质量较小的肽链(称为轻链,light chain,L链,相对分子质量约为24000)组成。让我们把抗体想象成在人的血液里飘浮着的成千上万个双齿的小叉。每个小叉的每个齿都可以黏结一个特定抗原的一个特定部位,这样一个双齿叉可以结合两个同样的抗原。抗原则可以是外来或病变的蛋白,甚至包括入侵病原体(真菌、细菌、病毒等)的RNA、DNA或多聚糖。
1.可变区(Variable Region,V区)
抗体小叉与小叉之间在结构上的主要差异是位于齿端的可变区——这些可变区决定着抗体的抗原特异性。H链可变区约含118个氨基酸残基和L链可变区约含108~111个氨基酸残基。可变区是抗体结合抗原的位置,其氨基酸的组成和排列决定抗体的抗原结合特异性。可变区存在一些氨基酸能够高频变化组合的区域,这些区域称为超变区(hypervariable region,HVR),超变区又称为互补决定区(complementarity-determining region, CDR),超变区决定了抗体的独特型(抗独特型抗体表达)。可变区中非HVR部位的氨基酸组成和排列相对比较保守,称为骨架区(framework region,FR区)。VL中的CDR有三个,通常分别位于第24~34,89~97位氨基酸残基,其中CDR3超变程度更高,抗体的特异性和亲和力成熟主要涉及到该区域的改造。
2
2.恒定区(Constant Region, C区)
抗体小叉的柄部由一系列氨基酸序列基本不变的区域组成——我们称之为恒定区。恒定区可以与细胞表面受体或补体系统蛋白相互作用,从而触发宿主效应功能(effector function),比如裂解入侵细胞或吞噬外来病原。抗体恒定区域位于H链靠近C端的3/4或4/5(约从119位氨基酸至C末端) 和L链靠近C端的1/2(约含105个氨基酸残基)区域。抗体重链恒定区分为CH1,CH2和CH3,其中CH3区域涉及到细胞膜表面受体结合,CH2涉及补体激活途径,是补体结合位点。简单来说,叉齿负责识别抗原,而叉柄则帮助宿主决定如何处置抗原。
3. 抗体Fab段和Fc段
IgG经木瓜蛋白酶酶切后裂解为2个完全相同的Fab段和1个Fc段,每个Fab段都为单价,可与抗原结合但不会再发生凝集反应;经胃蛋白酶酶切后裂解为1个完整F(ab)2片段和碎片化的Fc片段,F(ab’)2片段为双价,可同时结合两个抗原表位。Fab段为抗原结合片段(fragment of antigen binding,Fab),相当于抗体分子的两个臂,由一个完整的轻链和重链的VH和CH1结构域组成。Fc段为可结晶段(fragmentcrystallizable,Fc)相当于Ig的CH2和CH3结构域,是Ig与效应分子或者细胞相互作用的部位。Fab段包含完整的可变区,以及恒定区的CH1区域。Fc段仅指Ig恒定区CH2和CH3的区域,相当于Y字结构下面那一部分。
4. 重链抗体的结构
骆驼类和软骨鱼类中天然缺失轻链的抗体又被称为重链抗体,存在于亚洲的西亚骆驼(Camelusbactrianus)、非洲的单峰驼(C.dromedarius)和南美的大羊驼(Lama glama)、原驼(L.guanicoe)、羊驼(Vicugna pacos)和小羊驼(V.vicugna)等骆驼科中。
3
1995年又在护士鲨(Ginglymostoma cirratum)、斑纹须鲨(Oretolobus maculatus)、银鲛等软骨鱼中发现了无轻链或其他蛋白分子伴随的类似于重链抗体的抗原受体(new or nurse shark antigen receptor,NAR)。由于NAR分子与Ig亚型在跨膜和分泌方式等几个功能特征方面近似,因此也被称为免疫球蛋白新抗原受体(Ig new antigen receptor,IgNAR)。重链抗体具有广泛应用价值的是单域重链抗体(single domainantibody,sdAb)部分。单域重链抗体是指仅由重链抗体可变区(Variable region)组成的基因工程抗体,又称为VHH抗体(variable domain of heavy chain of heavy-chain antibody,VHH antibody)或纳米抗体(Nanobody,Nb),分子量为12-15 kD。
04
治疗性抗体的发展阶段

自1986年第一个治疗性抗体进入临床以来,治疗性抗体得到了迅速的发展,到目前为止,FDA共批准了近百个治疗性抗体药物,其已成为现代生物医药的重要组成部分。伴随现代科技的发展,治疗性抗体经历了鼠源性抗体,嵌合抗体,改性抗体和表面重塑抗体(部分人源化抗体),以及全人源化抗体等不同发展阶段。 
4
第一代:鼠源单抗(momab)
1986年,也就是在Milstein和Kohler凭借单抗杂交瘤技术获得诺贝尔奖后的第二年,强生的Orthoclone  OKT3成为第一个被美国FDA批准的单抗药,用于防止肾脏移植后的宿主排斥。但直到9年以后,第二个抗体药——礼来和强生的ReoPro——才于1995年在美国上市,被用来抑制血栓形成。 
第一个单克隆抗体药Orthoclone  OKT3来自于小鼠,它的氨基酸序列都是鼠源的。鼠源抗体在给病人服用过程中常常遇到一些问题:1)人体把这些单抗药当作异体蛋白,会产生免疫排斥。2)免疫排斥使单抗药很快从病人体内被清除掉,大大降低了它们应有的疗效。尤其治疗慢性疾病需要长期服用的情况下,鼠源单抗药在后续注射时疗效甚微;3)少数病例中,鼠源抗体会引起严重的过敏反应,甚至导致了个别病人的死亡。因此,早期单抗药的销售始终没有腾飞——Orthoclone OKT3的年销售额仅有1千万美元左右。
单抗药要想在江湖上立足,要想在医学上有更广泛的应用,必须要转变成人源化抗体或人源抗体。
第二代:人鼠嵌合单抗(ximab)和人源化单抗(zumab)
这里我们有必要区分一下人源化抗体和人源抗体。人源化抗体一般是以鼠源抗体为基础,通过更换蛋白片断和置换部分氨基酸序列, 使抗体的最终氨基酸序列更接近人源的。而人源抗体是任何能被人体B细胞表达的抗体,其氨基酸序列是100%由人的基因编码的。
20世纪90年代,以美国为主出现了几十家生物技术公司。他们个个身怀绝技——他们的技术平台都是围绕如何将抗体人源化或直接产生人源抗体而建立的,他们的目的都是将抗体药发扬光大。以研发抗体药为主的公司在当时的江湖上分两大流派。第一个流派可以称之为抗体蛋白工程派或人源化派。单抗在小鼠中产生后,它的部分氨基酸序列或被置换,或被拼接组合,其最终目的是既不引起人的免疫排斥,又不降低它对靶抗原的亲和性。这一流派又分为两个层次。第一个层次是嵌合抗体(Chimeric  antibody):  抗体的恒定区都被置换成人的氨基酸序列。嵌合单抗蛋白约33%的氨基酸序列来自小鼠,其余67%为人源的。第二个层次是人源化抗体(Humanized antibody),即拿到针对某抗原的小鼠抗体后,只取其识别抗原的几段区域(CDR区域),把它们移植到人源抗体中。人源化单抗中人源的序列占90%。人源化单抗显然比嵌合单抗更有优势,引起免疫排斥或超敏的风险更低。人源化单抗技术的代表公司为Protein Design Labs, 或PDL。基因泰克几个著名的单抗药——Herceptin, Xolair和Avastin——的人源化都需要获得PDL的技术许可。人源化单抗技术最大的缺点是缺乏通用的方法。每个抗体分子的人源化,都需要个案分析、分子建模、大量的改造和试错。即使这样,由于鼠源序列的存在,人源化单抗还是不能完全避免免疫排斥或超敏的风险。
5
第三代:全人源化单抗(mumab)
抗体药的第二个流派是全人源单抗。这一流派又分为两大门派:噬菌体展示和转基因小鼠。            
用噬菌体展示技术产生抗体完全避免了动物的使用。在这一技术中,先通过PCR技术建立一个以噬菌体质粒为载体的、表达无数个人源抗体可变区的基因库。当大肠杆菌被这些质粒转染后,千百万个噬菌体被释放出来。每个噬菌体表面呈现一个独特的抗体可变区片断。含有这些噬菌体混合物的溶液,在流过附着特定抗原的固态基质后,粘在基质表面、洗不走的往往是呈现特异性抗体的噬菌体颗粒。特异性抗体的基因再进一步被扩增、纯化。这一流派的代表公司包括CAT和Dyax。
转基因小鼠技术出道虽晚,但技术优势却最为明显。该技术通过转基因的手段把小鼠自身的抗体表达系统破坏掉,再引进人的抗体生成系统。这种转基因小鼠针对某种抗原就可以直接产生全人源的抗体。
噬菌体展示和转基因小鼠在执行过程中各有千秋。一般来说,噬菌体展示技术“先快后慢”,即找到针对某种靶蛋白的抗体很快,但选出的这个抗体和靶蛋白的亲和性往往不高,需要人工细调,更换个别氨基酸。优化这一步费时费力,而且即使优化的抗体和通过转基因小鼠出来的抗体相比,亲和力可能还是相差一个数量级。另外,在优化的过程中需要替换一些氨基酸,也就引进了被免疫排斥的风险。转基因小鼠技术是“先慢后快”,将抗原注射到小鼠体内、产生特异抗体、制备杂交瘤细胞等前几步需要几个月的时间。但一旦最初的抗体产生,其优化过程在小鼠体内继续完成,又快又好,并且不用担心免疫排斥的问题。
在这里要不得不提到全球第一个上市的全人源抗体—阿达木单抗(修美乐)。阿达木单抗始于1993年巴斯夫子公司BASF Knoll和剑桥抗体技术公司(Cambridge Antibody Technology,CAT)的合力研究。剑桥抗体技术以TNFα为抗原使用它们特有的噬菌体展示技术在体外筛选中得到了全人抗体D2E7。在随后的研究中,BASF Knoll进一步对全人抗体D2E7进行了完善,并完成了前期的生产工艺开发和临床申报。
2002年6月,美国雅培制药(Abbott)以69亿美元收购BASF Knoll,获得了全人抗体D2E7的开发生产和销售权,最终将阿达木单抗推向市场。自2002年首次获得FDA批准上市以来,阿达木单抗已经累计创造了1161亿美元的销售收入,2017年的美国市场增速为18.5%,全球市场增速为14.6%,因此直到今天仍然以每年两位数的增幅刷新单只药品的年度销售记录。 
小结
抗体药物从发现到进入临床应用,经历了曲折而又漫长的历程。在这段时间里,人们对于抗体药物的认识发生了巨大的变化。在过去的十年里,抗体已经成为医药市场上最畅销的药物。预估 2021 年全球十大畅销的药物中,就会有 5 个抗体类药物。因此,随着抗体类药物被批准用于治疗各种包括癌症、自身免疫、代谢和传染病,治疗性抗体药物的市场必会呈现爆炸式增长的态势。

网站导航

联系方式

  • 网址:
  • http://www.suzhouwomei.com/
  • 邮箱:
  • womeishengwu@szwmbio.com
  • 地址:
  • 苏州市张家港市凤凰镇凤凰大道南侧23号

扫码关注

在线留言

您可以在此处留言您想要和我们说的话,我们会仔细查看的哦。

在此输入您的留言内容

COPYRIGHT © 苏州沃美生物有限公司  版权所有    备案号:苏ICP备2021054580号-1 技术支持:万禾科技